اندازگيری فرکانس

دید کلی

معمولا اندازه گیری فرکانسهای صوتی (20Hz تا 20kHz) ساده‌تر از فرکانسهای دیگر انجام می‌شود و برای اندازه گیری این فرکانسها ابزارها و روشهای بسیاری موجود است. البته توجه داشته باشید که به صرف سادگی اندازه گیری فرکانسهای صوتی نباید از دقت لازم کاست، بلکه همانند دیگر اندازه گیریها این اندازه گیری نیز باید صحیح و دقیق باشد.

روشهای اندازه گیری

روش Beat _ Note (صدای تداخلی)

ساده‌ترین روش اندازه گیری فرکانس مجهول صوتی ( ) تنظیم دستگاه سیگنال ژنراتور صوتی روی تداخل صفر است. پس از این عمل می‌توان از روی صفحه مدرج سیگنال ژنراتور مقدار فرکانس را خواند. در این روش هم می‌توان از گوشی استفاده نمود و یا به جای آن میتری در مدار قرار داد. دو سیگنال بطور همزمان به شاخص اختلاف فرکانس وارد می‌شود. چنانچه اختلاف فرکانس دو سیگنال صفر باشد، در گوشی صدایی با قدرت بیشتر و یا در میتر با انحراف عقربه بیشتر روبه‌رو خواهیم شد.

در این حالت آزمایشگر باید دقت کند که سیگنال ژنراتور را روی هماهنگها یا هارمونیکهای تنظیم نکند. با چند آزمایش می‌توان به اختلاف این دو حالت پی برد. سیگنال منتجه حاصل از فرکانس اصلی دارای شدت بیشتری است. چنانچه آزمایشگر در اندازه گیری خود دقت لازم بکار برد، دقت اندازه گیری معادل با دقت دستگاه سیگنال ژنراتور صوتی که معمولا تا است، خواهد شد.

روش ولت متر

این روش اندازه گیری صامت است و در نتیجه از خطاهای حاصل از عیوب ممکن در گوش پرهیز می‌شود. در این روش با اندازه گیری مقدار موثر موج حاصل از تداخل دو سیگنال توسط ولت متر مقدار فرکانس مجهول بدست می‌آید. سیگنال مجهول ( ) و سیگنال ژنراتور ( ) از طریق مقاومتهای جداسازی و که می‌توانند دارای مقادیری بین 820 تا 1800 اهم باشند، به ولت متر وارد می شود.

برای اندازه گیری فرکانس با این روش ابتدا باید سیگنال مجهول را کنار گذارده و خروجی ژنراتور را برای انحراف عقربه ولت متر تا وسط صفحه مدرج تنظیم کنید. سپس با اعمال سیگنال مجهول مشاهده خواهید کرد که عقربه به نوسان افتاده و به بالا و پایین وسط صفحه حرکت می‌کند. با تنظیم فرکانس ژنراتور چنانچه روی فرکانسی برابر فرکانس مجهول قرار گیرد، عقربه از نوسان افتاده و به حالت سکون می‌رسد. بنابراین در این روش می‌توان با دقت بیشتری فرکانس مجهول را بدست آورد. یکی از مزایای این روش این است که عقربه تنها در فرکانس اصلی سکون خواهد یافت و در هماهنگها نیز نوسان خواهد کرد.

اندازه گیری فرکانس نوع القایی

این دستگاه را اندازه گیری فرکانس نوع آهن متحرک نیز می‌نامند. در این دستگاه فرکانس مستقیما توسط آهن متحرک خوانده می‌شود. در این دستگاه دو سیم پیچ ثابت و بطور عمود بر یکدیگر سوار می‌شوند. عنصر متحرک یک تیغه آهنی نرم و باریک و بلند است که به آن عقربه‌ای متصل کرده‌اند. انحراف این تیغه آهنی متناسب با میدان مغناطیسی حاصل از دو سیم پیچ و است. شبکه سلفی _ مقاومتی متصل به سیم پیچها اختلاف فاز بین جریانهای جاری در سیم پیچها را کاهش داده و بدان وسیله مانع از چرخش تیغه آهنی می‌شود. در این صورت چون تیغه نمی‌تواند چرخش میدان مغناطیسی را دنبال کند، انحرافی متناسب با فرکانس جریان پیدا می‌کند.
این نوع فرکانس را معمولا برای اندازه گیری فرکانس برق شهری (25 ، 40 ، 50 ، 60 و 125 هرتز) بکار می‌برند. البته وسایلی با این چنین ساختمانی برای اندازه گیری فرکانسهای بالاتر تا حدود 500 هرتز نیز ساخته شده است. اغلب دستگاه را برای یک فرکانس معمول طراحی کرده و آن را در وسط صفحه مدرج قرار می‌دهند. انحراف عقربه در دو طرف فرکانس کار دستگاه از 30 درصد تا 85 درصد متغیر است. دقت این نوع وسایل بستگی به نوع ساخت و مدل آن دارد و می‌تواند به 0،5درصد برسد. دستگاه اندازه گیر فرکانس نوع القایی را می‌توان برای یک ولتاژ / یک فرکانس ، دو ولتاژ/ یک فرکانس یا دو ولتاژ / دو فرکانس بکار برد.

اندازه گیری فرکانس نوع تیغه‌ای

این وسیله به نام تیغه مرتعش معروف است. در این وسیله M یک ماده مغناطیس دائمی می‌باشد. روی گردن این مغناطیس یک سیم پیچ (L) با تعداد دور بسیار از سیم نازک پیچیده شده است. این سیم پیچ به منبع جریان فرکانس صوتی مجهول متصل می‌شود. یک طرف تیغه R (یک نوار نازک فلزی مانند آهن یا فولاد) به یکی از قطبین آهنربا وصل شده است. طرف دیگر این تیغه با فاصله کمی روی قطب دیگر آهنربا قرار می‌گیرد. تیغه فنری دارای پریود ارتعاشی است که با توجه به طول و ضخامت آن تعیین می‌شود.

چنانچه جریان متناوبی به سیم پیچ جاری شود، نیروی میدان مغناطیسی منتج با فرکانس موج ac تغییر می‌کند و تیغه را وادار به ارتعاش می‌نماید. وقتی فرکانس موج ، معادل با فرکانس طبیعی باشد، ارتعاش خیلی شدید است، بطوری که انتهای آزاد تیغه دیده نمی‌شود. چنانچه فرکانس موج بالاتر یا پائین‌تر از فرکانس طبیعی تیغه باشد، ارتعاش کندتر صورت گرفته و به شکل خاکستری رنگ دیده می‌شود.

در دستگاههای عملی چندین تیغه را با طولهای مختلف کنار هم سوار می‌کنند. قطب بالایی آهنربا چنان بریده شده که تیغه‌ها دارای طولهای متفاوتی باشند. این عمل بدین منظور انجام می‌گیرد که انتهای آزاد تیغه‌ها در یک خط قرار گرفته و از خارج به سهولت قابل روئیت باشند. برای روئیت بهتر تیغه‌ها خمیدگی سر آزاد آنها را به رنگ سفید در می‌آورند. اگر اختلاف طول تیغه‌ها کم باشد، در یک فرکانس مشخص چندین تیغه به ارتعاش در می‌آید (معمولا 3 تیغه)، اما آن تیغه که ارتعاش طبیعی وی به فرکانس مجهول نزدیکتر است، فعالتر بوده و از دید محو می‌شود، در حالی که تیغه‌های دیگر به رنگی تیره هنوز دیده می‌شوند.

اندازه گیری الکترونیکی فرکانس از نوع آنالوگ

این دستگاه دارای امپدانس زیادی بوده و قابلیت اندازه گیری 0 تا 10kHz و 0 تا 100kHz را دارد. از آمپرمتر فرکانس جریان dc از 0 تا 50 میکروآمپر عبور می‌کند. مقدار فرکانس مستقل از دامنه سیگنال 1،7 ولت به بالا بوده و همچنین مستقل از شکل موج می‌باشد و پاسخ مدار خطی است و بنابراین کافی است در هر باندی یک نقطه تنظیم شود. این آرایش شامل دو تقویت کننده بیش تغذیه شده (Overdriven) است. خروجی طبقه آخر ( ) یک موج مربعی است که در یک مدار RC بکار برده می‌شود. دیودهای و عمل یکسوسازی را انجام می‌دهند.

تا وقتی دامنه موج مربعی ثابت است، انحراف عقربه (M) تنها به تعداد پالسهای موجود در هر ثانیه بستگی پیدا می‌کند و بنابراین بطور مستقیم با فرکانس سیگنال متناسب است. دستگاه را باید ابتدا روی یک نقطه از هر باند تنظیم نمود. این تنظیم تنها برای یک بار انجام می‌شود. بهترین نقطه برای تنظیم عبارت از فرکانس حد بالای باند جهت انحراف کامل عقربه است. پتانسیومترهای تا برای این منظور در مدار جای گرفته‌اند.

اندازه گیری الکترونیکی نوع دیجیتال

همانند اندازه گیر نوع آنالوگ اندازه گیر نوع دیجیتال نیز الکترونیکی است و امپدانس بالایی تولید می‌کند. در این نوع اندازه گیرها میتر M حذف شده و فرکانس به صورت یک سری اعداد که توسط مدارهای خاص تولید می‌شود، نشان داده خواهد شد. بنابراین اندازه گیر دیجیتال ، یک دستگاه تمام الکترونیکی است. دستگاه نوع دیجیتالی اصولا شامل یک شمارنده الکترونیکی است که تعداد پالسهای موجود در هر ثانیه را شمرده و سپس یک نمایش دهنده 5 یا 8 عددی را جهت نمایش فرکانس بکار می‌اندازد. گیت مبنای زمانی یک ثانیه‌ای توسط یک سیگنال مبنای زمانی دقیق (سیگنال ساعت) کنترل می‌شود. این سیگنال در داخل دستگاه تولید شده و معمولا از یک نوسان ساز کریستالی بدست

 

 مقدار جریان و ولتاژ متناوب

برای اندازه گیری مقدار جریان ، ولتاژ ، توان ، فرکانس و اختلاف فاز ، دستگاههای اندازه گیری مناسب مورد نیاز است.

اندازه گیری جریان و ولتاژ متناوب

آمپر متر و ولت متر دو دستگاه اندازه گیری هستند که بوسیله آنها مقدار جریان مصرفی و ولتاژ مصرف کننده‌ها را می‌توان اندازه گرفت. این دستگاهها براساس اهداف مورد نیاز به صورت‌های مختلف ساخته می‌شوند.

دستگاههای اندازه گیری تابلویی

این دستگاه معمولا یک رنج دارند و از دقت کمی برخوردار هستند کاربرد آنها در روی تابلوها به منظور نشان دادن کمیت مورد نظر می‌باشد.

دستگاههای اندازه گیری پرقابل (قابل حمل)

دستگاههای پر قابل کاربردی وسیع در صنعت برق دارند این دستگاه به دو صورت آنالوگ و دیجیتال در کارخانجات ساخته می‌شوند. از آنجا که این دستگاهها کمیت‌های مختلف (جریان ، ولتاژ ، مقاومت و...) را اندازه گیری می‌کنند در اصطلاح با عناوین آوومتر (A.V.Ω) و یا مالتی‌متر در بازار به فروش می‌رسند. کمیت‌های الکتریکی مورد سنجش در این دستگاه در محدوده بسیار وسیع و با دقت قابل قبولی اندازه گیری می‌شوند مالتی مترهای دیجیتالی دارای تنوع ، انعطاف و قیمت ارزانتری نسبت به مالتی مترهای آنالوگ هستند.

دستگاههای اندازه گیری آزمایشگاهی

به منظور انجام برخی از تحقیقات علمی در آزمایشگاه و کنترل دقیق فرآیند تولید صنایع پیشرفته نظامی ، اتمی و فضایی به دستگاههای اندازه گیری الکتریکی‌ای نیاز است که از دقت و کیفیت مرغوب گری نسبت به دستگاههای اندازه گیری معمولی برخوردار باشند. این دستگاهها برای کالیبره کردن دستگاههای اندازه گیری در موسسات استاندارد نیز بکار می‌روند. این وسایل اندازه گیری دارای ساختمانی پیچیده هستند و نسبت به دستگاههای معمولی قیمت بالاتری دارند.

اندازه گیری اختلالات اختلاف سطح الکتریکی (ولتاژ)

مقدار ولتاژ دو سر یک مولد یا مصرف کننده همواره بوسیله ولت متر اندازه گیری می‌شود. چون اختلاف پتانسیل بین دو نقطه را اندازه گیری می‌کند، بنابراین باید با دو سر مصرف کننده یا مولد به صورت موازی قرار گیرند، ولت متر به دو روش مستقیم و غیر مستقیم اختلاف سطح الکتریکی را اندازه می‌گیرد در روش مستقیم ولت متر به دو سر مصرف کننده متصل می‌شود و مقدار ولتاژ را اندازه گیری می‌کند.

در روش غیر مستقیم ولت متر بوسیله یک مبدل ولتاژ به دو سر مصرف کننده یا مولد متصل می‌شود این روش در مواردی بکار می‌رود که ولتاژ کار مصرف کننده‌ها یا شبکه بیش از حد مجاز دستگاه اندازه گیری باشد و یا این که از نظر حفاظتی نتوان ولتاژ مورد اندازه گیری را مورد سنجش قرار داد. کلید ولت متر برای اندازه گیری مقدار ولتاژهای خطی و فازی در شبکه‌های سه فاز ، از طریق تنها یک ولت متر از یک کلید ولت متر استفاده می‌کنند.


ترانسفورموتور

دید کلی:


ترانسفورماتورها را با توجه به کاربرد و خصوصیات آنها به سه دسته کوچک متوسط و بزرگ دسته بندی کرد. ساختن ترانسفورماتورهای بزرگ و متوسط به دلیل مسایل حفاظتی و عایق بندی و امکانات موجود ، کار ساده ای نیست ولی ترانسفورماتورهای کوچک را می توان بررسی و یا ساخت. برای ساختن ترانسفورماتورهای کوچک ، اجزای آن مانند ورقه آهن ، سیم و قرقره را به سادگی می توان تهیه نمود.

اجزای تشکیل دهنده یک ترانسفورماتور به شرح زیر است؛


هسته ترانسفورماتور:


هسته ترانسفورماتور متشکل از ورقه های نازک است که سطح آنها با توجه به قدرت ترانسفورماتور ها محاسبه می شود. برای کم کردن تلفات آهنی هسته ترانسفورماتور را نمی توان به طور یکپارچه ساخت. بلکه معمولا آنها را از ورقه های نازک فلزی که نسبت به یکدیگر عایق‌اند، می سازند. این ورقه ها از آهن بدون پسماند با آلیاژی از سیلیسیم (حداکثر 4.5 درصد) که دارای قابلیت هدایت الکتریکی و قابلیت هدایت مغناطیسی زیاد است ساخته می شوند.

در اثر زیاد شدن مقدار سیلیسیم ، ورقه‌های دینام شکننده می شود. برای عایق کردن ورقهای ترانسفورماتور ، قبلا از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانده می شود، استفاده می کردند اما امروزه بدین منظور در هنگام ساختن و نورد این ورقه ها یک لایه نازک اکسید فسفات یا سیلیکات به ضخامت 2 تا 20 میکرون به عنوان عایق در روی آنها می مالند و با آنها روی ورقه ها را می پوشانند. علاوه بر این ، از لاک مخصوص نیز برای عایق کردن یک طرف ورقه ها استفاده می شود. ورقه های ترانسفورماتور دارای یک لایه عایق هستند.

بنابراین ، در مواقع محاسبه سطح مقطع هسته باید سطح آهن خالص را منظور کرد. ورقه‌های ترانسفورماتورها را به ضخامت های 0.35 و 0.5 میلی متر و در اندازه های استاندارد می سازند. باید دقت کرد که سطح عایق شده ى ورقه های ترانسفورماتور همگی در یک جهت باشند (مثلا همه به طرف بالا) علاوه بر این تا حد امکان نباید در داخل قرقره فضای خالی باقی بماند. لازم به ذکر است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آنها نیز جلوگیری شود.


سیم پیچ ترانسفورماتور :


معمولا برای سیم پیچ اولیه و ثانویه ترانسفورماتور از هادی های مسی با عایق (روپوش) لاکی استفاده می‌کنند. اینها با سطح مقطع گرد و اندازه‌های استاندارد وجود دارند و با قطر مشخص می‌شوند. در ترانسفورماتورهای پرقدرت از هادیهای مسی که به صورت تسمه هستند استفاده می‌شوند و ابعاد این گونه هادی‌ها نیز استاندارد است.

توضیح سیم پیچی ترانسفورماتور به این ترتیب است که سر سیم پیچ‌ها را به وسیله روکش عایقها از سوراخهای قرقره خارج کرد، تا بدین ترتیب سیم ها قطع (خصوصا در سیمهای نازک و لایه‌های اول) یا زخمی نشوند. علاوه بر این بهتر است رنگ روکش‌ها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، را به راحتی بتوان سر هر سیم پیچ را مشخص کرد. بعد از اتمام سیم پیچی یا تعمیر سیم پیچهای ترانسفورماتور باید آنها را با ولتاژهای نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و سیم پیچ اولیه آزمایش کرد.


قرقره ترانسفورماتور:


برای حفاظ و نگهداری از سیم پیچ‌های ترانسفورماتور خصوصا در ترانسفورماتورهای کوچک باید از قرقره استفاده نمود. جنس قرقره باید از مواد عایق باشد قرقره معمولا از کاغذ عایق سخت ، فیبرهای استخوانی یا مواد ترموپلاستیک می سازند. قرقره هایی که از جنس ترموپلاستیک هستند معمولا یک تکه ساخته می شوند ولی برای ساختن قرقره های دیگر آنها را در چند قطعه ساخت و سپس بر روی همدگر سوار کرد. بر روی دیواره های قرقره باید سوراخ یا شکافی ایجاد کرد تا سر سیم پیچ از آنها خارج شوند.

اندازه قرقره باید با اندازه ى ورقه‌های
ترانسفورماتور متناسب باشد و سیم پیچ نیز طوری بر روی آن پیچیده شود. که از لبه های قرقره مقداری پایین تر قرار گیرد تا هنگام جا زدن ورقه‌های ترانسفورماتور ، لایه ى رویی سیم پیچ صدمه نبیند. اندازه قرقره های ترانسفورماتورها نیز استاندارد شده است اما در تمام موارد ، با توجه به نیاز ، قرقره مناسب را می توان طراحی کرد


خازن

خازن ها انرژي الكتريكي را نگهداري مي كنند و به همراه مقاومت ها ، در مدارات تايمينگ استفاده مي شوند . همچنين از خازن ها براي صاف كردن سطح تغييرات ولتاژ مستقيم استفاده مي شود . از خازن ها در مدارات بعنوان فيلتر هم استفاده مي شود . زيرا خازن ها به راحتي سيگنالهاي غير مستقيم AC را عبور مي دهند ولي مانع عبور سيگنالهاي مستقيم DC  مي شوند .

ظرفيت :

ظرفيت معياري براي اندازه گيري توانائي نگهداري انرژي الكتريكي است . ظرفيت زياد بدين معني است كه خازن قادر به نگهداري انرژي الكتريكي بيشتري است . واحد اندازه گيري ظرفيت فاراد است . 1 فاراد واحد بزرگي است و مشخص كننده ظرفيت بالا مي باشد . بنابراين استفاده  از واحدهاي كوچكتر نيز در خازنها مرسوم است . ميكروفاراد µF  ، نانوفاراد nF  و پيكوفاراد pF  واحدهاي كوچكتر فاراد هستند .

µ means 10-6 (millionth), so 1000000µF = 1F

n means 10-9 (thousand-millionth), so 1000nF = 1µF

p means 10-12 (million-millionth), so 1000pF = 1nF

انواع مختلفي از خازن ها وجود دارند كه ميتوان از دو نوع اصلي آنها ، با پلاريته ( قطب دار ) و بدون پلاريته ( بدون قطب ) نام برد .

خازنهاي قطب دار :

الف - خازن هاي الكتروليت

در خازنهاي الكتروليت قطب مثبت و منفي بر روي بدنه آنها مشخص شده و بر اساس قطب ها در مدارات مورد استفاده قرار مي گيرند . دو نوع طراحي براي شكل اين خازن ها وجود دارد . يكي شكل اَكسيل كه در اين نوع پايه هاي يكي در طرف راست و ديگري در طرف چپ قرار دارد و ديگري راديال كه در اين نوع هر دو پايه خازن در يك طرف آن قرار دارد . در شكل نمونه اي از خازن اكسيل و راديال نشان داده شده است .

 

در خازن هاي الكتروليت ظرفيت آنها بصورت يك عدد بر روي بدنه شان نوشته شده است . همچنين ولتاژ تحمل خازن ها نيز بر روي بدنه آنها نوشته شده و هنگام انتخاب يك خازن بايد اين ولتاژ مد نظر قرار گيرد . اين خازن ها آسيبي نمي بينند مگر اينكه با هويه داغ شوند .

 

ب - خازن هاي تانتاليوم

خازن هاي تانتاليم هم از نوع قطب دار هستند و مانند خازنهاي الكتروليت معمولاً ولتاژ كمي دارند . اين خازن ها معمولاً در سايز هاي كوچك و البته گران تهيه مي شوند و بنابراين يك ظرفيت بالا را  در سايزي كوچك را ارائه مي دهند .

در خازنهاي تانتاليوم جديد ، ولتاژ و ظرفيت بر روي بدنه آنها نوشته شده ولي در انواع قديمي از يك نوار رنگي استفاده مي شود كه مثلا دو خط دارد ( براي دو رقم ) و يك نقطه رنگي براي تعداد صفرها وجود دارد كه ظرفيت بر حست ميكروفاراد را مشخص مي كنند . براي دو رقم اول كدهاي استاندارد رنگي استفاده مي شود ولي براي تعداد صفرها و محل رنگي ، رنگ خاكستري به معني × 0.01  و رنگ سفيد به معني × 0.1  است . نوار رنگي سوم نزديك به انتها ، ولتاژ را مشخص مي كند بطوري كه  اگر اين خط زرد باشد 3/6 ولت ، مشكي 10 ولت ، سبز 16 ولت ، آبي 20 ولت ، خاكستري 25 ولت و سفيد 30 ولت را نشان مي دهد .

براي مثال رنگهاي آبي - خاكستري و نقطه سياه به معني 68 ميكروفاراد است .

آبي - خاكستري و نقطه سفيد  به معني 8/6 ميكروفاراد است .

 

 

خازنهاي بدون قطب :

خازن هاي بدون قطب معمولا خازنهاي با ظرفيت كم هستند و ميتوان آنها را از هر طرف در مدارات مورد استفاده قرار داد . اين خازنها در برابر گرما تحمل بيشتري دارند و در ولتاژهاي بالاتر مثلا 50 ولت ، 250 ولت و ... عرضه پيدا كردن ظرفيت اين خازنها كمي مشكل است چون انواع زيادي از اين نوع خازنها وجود دارد و سيستم هاي كد گذاري مختلفي براي آنها وجود دارد . در بسياري از خازن ها با ظرفيت كم ، ظرفيت بر روي خازن نوشته شده ولي هيچ واحد يا مضربي براي آن چاپ نشده و براي دانستن واحد بايد به دانش خودتان رجوع كنيد . براي مثال بر 1/0  به معني 0.1µF يا 100 نانوفاراد است . گاهي اوقات بر روي اين خازنها چنين نوشته مي شود  ( 4n7  ) به معني 7/4 نانوفاراد . در خازن هاي كوچك چنانچه نوشتن بر روي آنها مشكل باشد از شماره هاي كد دار بر روي خازن ها استفاده مي شود . در اين موارد عدد اول و دوم را نوشته و سپس به تعداد عدد سوم در مقابل آن صفر قرار دهيد تا ظرفيت بر حسب پيكوفاراد بدست ايد . بطور مثال اگر بر روي خازني عدد  102 چاپ شده باشد ، ظرفيت برابر خواهد بود با 1000 پيكوفاراد يا 1 نانوفاراد .

 

كد رنگي خازن ها :

در خازن هاي پليستر براي سالهاي زيادي  از كدهاي رنگي بر روي بدنه آنها استفاده مي شد . در اين كد ها سه رنگ اول ظرفيت را نشان مي دهند و رنگ چهارم تولرانس ا نشان مي دهد .

براي مثال قهوه اي - مشكي - نارنجي به معني 10000 پيكوفاراد يا 10 نانوفاراد است .

خازن هاي پليستر امروزه به وفور در مدارات الكترونيك مورد استفاده قرار مي گيرند . اين خازنها در برابر حرارت زياد معيوب مي شوند و بنابراين هنگام لحيمكاري بايد به اين نكته توجه داشت .

 

            

كد رنگي خازنها

رنگ

شماره

سياه

0

قهوه اي

1

قرمز

2

نارنجي

3

زرد

4

سبز

5

آبي

6

بنفش

7

خاكستري

8

سفيد

9

خازن ها با هر ظرفيتي وجود ندارند . بطور مثال خازن هاي 22 ميكروفاراد يا 47 ميكروفاراد وجود دارند ولي خازن هاي 25 ميكروفاراد يا 117 ميكروفاراد وجود ندارند .

دليل اينكار چنين است :

فرض كنيم بخواهيم خازن ها را با اختلاف ظرفيت ده تا ده تا بسازيم . مثلاً 10 و 20 و 30 و . . . به همين ترتيب . در ابتدا خوب بنظر مي رسد ولي وقتي كه به ظرفيت مثلاً 1000 برسيم چه رخ مي دهد ؟

مثلاً 1000 و 1010 و 1020 و . . . كه در اينصورت اختلاف بين خازن 1000 ميكروفاراد با 1010 ميكروفاراد بسيار كم است و فرقي با هم ندارند پس اين مسئله معقول بنظر نمي رسد .

براي ساختن يك رنج محسوس از ارزش خازن ها ، ميتوان براي اندازه ظرفيت از مضارب استاندارد 10 استفاده نمود . مثلاً 7/4 - 47 - 470 و . . .  و يا  2/2 - 220 - 2200 و . . .

 

 

خازن هاي متغير :

در مدارات تيونينگ راديوئي از اين خازن ها استفاده مي شود و به همين دليل به اين خازنها گاهي خازن تيونينگ هم اطلاق مي شود . ظرفيت اين خازن ها خيلي كم و در حدود 100 تا 500 پيكوفاراد است و بدليل ظرفيت پائين در مدارات تايمينگ مورد استفاده قرار نمي گيرند .

در مدارات تايمينگ از خازن هاي ثابت استفاده مي شود و اگر نياز باشد دوره تناوب را تغيير دهيم ، اين عمل بكمك مقاومت انجام ميدهد...

 

خازن های تریمر

خازن های تریمر خازن های متغییر کوچک و با ظرفیت بسیار پایین هستند . ظرفیت این خازن ها از حدود 1 تا 100 پیکوفاراد ماست و بیشتر در تیونرهای مدارات با فرکانس بالا مورد استفاده قرار می گیرند .

خازنهای ثابت:

خازن های ثابت را بر اساس نوع ماده ی دی الکتریک به کار رفته در آنها تقسیم بندی و نام گذاری می کنند و از آنها در مصارف مختلف استفاده می شود . از جمله این خازنها می توان انواع سرامیکی ، میکا ، ورقه ای ( کاغذی و پلاستیکی ) ،الکترولیتی ، روغنی ، گازی و نوع خاص فیلم ( Film ) را نام برد .
اگر ماده ی دی الکتریک طی یک فعالیت شیمیایی تشکیل شده باشد آن را خازن الکترولیتی و در غیر این صورت آن را خازن خشک گویند . خازن های روغنی و گازی در صنعت برق بیش تر در مدارهای الکتریکی برای راه اندازی و یا اصلاح ضریب قدرت به کار می روند . بقیه ی خازن های ثابت دارای این خازن ها دارای ظرفیت معینی هستند که در وضعیت معمولی تغییر پیدا نمی کنند .

 ویژگی های خاصی هستند که در جای خود بدانها اشاره گردیده است


انرژی خورشید

گفتیم که ذغال سنگ، نفت وگاز همیشگی نیستند و به شکلی که اکنون آن ها را مصرف می کنیم، عاقبت روزی تمام خواهند شد. در آن روز، به انرژیهای جدیدی نیاز خواهیم داشت.ما می توانیم با استفاده از نیروی باد، امواج دریا و رودهای کوهستانی که آبشان پر فشار و خروشان است، برق تولید کنیم امآ، علاوه بر این ها، یک منبع بسیار بزرگ انرژی نیز در کنارمان قرار دارد. آیا آن را می شناسید؟ بله، درست است: خورشید.

خورشید زمین را گرم و روشن می کند.گیاهانو جانوران را نیز انرژی خورشیدی را لازم دارند تا زنده بمانند. اگر خورشید نبود یا از زمین خیلی دورتر بود و گرمایش کمتر به ما می رسید، سطح زمین خیلی سرد و تاریک می شد و هیچ موجودی نمی توانست روی آن زندگی کندهمه ما به انرژی نیاز داریم. انرژی مانند نیرویی نامرئی در بدن ما وجود دارد و آن را به کار می اندازد. اگر انرژی به بدن نرسد، توانایی انجام کار را از دست می دهیم و پس از مدتی می میریم.

ما انرژی را از غذایی که می خوریم یه دست می آوریم. با هر حرکت و کاری که انجام می دهیم، بخشی از انرژی موجود در بدن صرف می شود. حتی برای خواندن این مطلب هم مقداری انرژی لازم است. برای همین باید هر روز غذاهای کافی و مناسبی را بخوریم. گیاهان و جانوران نیز برای زنده ماندن و رشد و حرکت، به انرژی نیاز دارند.

تمام دستگاهها و ماشین های ساخته شده بدست انسان نیز با ایتفاده از انرژی کار می کنند. بسیاری از این ماشین ها برقی هستند. حتماٌ در خانه شما هم دستگاههایی مثل رادیو، تلویزیون، اطو، یخچال... و وجود دارد. اگر به هر دلیلی برق خانه قطع شود، تمام این دستگاهها از کار می افتند و بدون استفاداه می شوند. اما آیا می دانید برق از کچا بدست می آوریم؟ برای تولید برق، سوخت هایی مثل ذغال سنگ، نفت و گاز را می سوزانیم. این نوع سوخت ها را سوخت فسیلی می نامند. سوخت های فسیلی از باقی ماند گیاهان و جانورانی به وجود می آمده اند که میلیون ها میلیون سال قبل روی زمین زندگی می کردند. وقتی این جانوران و گیاهان مردند و از بین رفتند، سال های زیادی زیر فشار لایه های زمین ماندند تا به ذغال سنگ و نفت و گاز تبدیل شدند.
اکنون در جهان میلیون ها میلیون ماشین وجود دارد. تعدادی از این ماشین ها با زغال سنگ، نفت، بنزین و گاز کار می کنند. بسیاری از آن ها نیز برای کارکردن به برق نیاز دارند. بخش زیادی از برق مورد نیاز جهان، با سوزاندن سوخت های فسیلی تولید می شود. برای همین هر روز مقدار زیادی از این سوخت ها مصرف می شود و اگر این کار ادامه پیدا کند، سرانجام روزی می رسد که سوخت های فسیلی زمین تمام می شوند.

انرژی خورشید
گفتیم که ذغال سنگ، نفت وگاز همیشگی نیستند و به شکلی که اکنون آن ها را مصرف می کنیم، عاقبت روزی تمام خواهند شد. در آن روز، به انرژیهای جدیدی نیاز خواهیم داشت.ما می توانیم با استفاده از نیروی باد، امواج دریا و رودهای کوهستانی که آبشان پر فشار و خروشان است، برق تولید کنیم امآ، علاوه بر این ها، یک منبع بسیار بزرگ انرژی نیز در کنارمان قرار دارد. آیا آن را می شناسید؟ بله، درست است: خورشید.
خورشید زمین را گرم و روشن می کند.گیاهانو جانوران را نیز انرژی خورشیدی را لازمدارند تا زنده بمانند. اگر خورشید نبود یا از زمین خیلی دورتر بود و گرمایش کمتر به ما می رسید، سطح زمین خیلی سرد و تاریک می شد و هیچ موجودی نمی توانست روی آن زندگی کند.
اگر خورشید به زمین نزدیکتر بود، مشکلات دیگری بوجود می آمد. در این حالت، گرمای سطح زمین آنقدر زیاد می شد که تمام یخ های قطب های شمال و جنوب آب می شدند و خشکی ها زیر اب می رفتند.گیاهان و جانوران و موجودات زنده هم از گرمای زیاد از بین می رفتند و می مردند.

خورشید به توپ بزرگ آتشین شباهت دارد صد بار بزرگتر از زمین است. این ستاره ها از گازهای هیدروژن و هلیوم تشکیل شده است.
گازها انفجارهای بزرگی را بوجود می آورند و پرتوهای قوی گرما و نور را تولید می کنند. این پرتوها از خورشید به سوی زمین می آینددر طول راه، یک سوم آن ها در فضا پخش می شوند و بقیه به صورت انرژی گرما و نور به زمین می رسند. می دانیم که سرعت نور 300000 متر در ثانیه است. از سوی دیگر، 8 دقیقه طول می کشد که نور خورشید به زمین برسد. بنابراین می توانید فاصله خورشید تا زمین را حساب کنید.

در این مسیر طولانی، مقدار زیادی از نور و گرمای خورشید از دست می رود، اما همان اندازه ای که به زمین می رسد، کافی است تا شرایط مناسبی برای زندگی ما و جانوران و گیاهان به وجود آید.

هر چیزی از ذرات بسیار کوچکی به نام اتم ساخته شده است. وقتی نور خورشید بر یک شیء می تابد، این ذرات به حرکت یا جنبش در می آیند. حرکت اتم ها گرما تولید می کند و شیء گرم می شود.

اجسامی که تیره رنگ یا سیاه هستند، انرژی خورشید را بیشتر جذب می کنند و گرم تر می شوند. اما اجسام روشن یا سفید، مقداری زیادی از پرتوهای خورشید را بر می گردانند. برای همین، مردم در تابستان لباس های روشن و سفید می پوشند تا خیلی گرمشان نشود.

اگر خورشید به زمین نزدیکتر بود، مشکلات دیگری بوجود می آمد. در این حالت، گرمای سطح زمین آنقدر زیاد می شد که تمام یخ های قطب های شمال و جنوب آب می شدند و خشکی ها زیر اب می رفتند.گیاهان و جانوران و موجودات زنده هم از گرمای زیاد از بین می رفتند و می مردند.
خورشید به توپ بزرگ آتشین شباهت دارد صد بار بزرگتر از زمین است. این ستاره ها از گازهای هیدروژن و هلیوم تشکیل شده است.
گازها انفجارهای بزرگی را بوجود می آورند و پرتوهای قوی گرما و نور را تولید می کنند. این پرتوها از خورشید به سوی زمین می آینددر طول راه، یک سوم آن ها در فضا پخش می شوند و بقیه به صورت انرژی گرما و نور به زمین می رسند. می دانیم که سرعت نور 300000 متر در ثانیه است. از سوی دیگر، 8 دقیقه طول می کشد که نور خورشید به زمین برسد. بنابراین می توانید فاصله خورشید تا زمین را حساب کنید.
در این مسیر طولانی، مقدار زیادی از نور و گرمای خورشید از دست می رود، اما همان اندازه ای که به زمین می رسد، کافی است تا شرایط مناسبی برای زندگی ما و جانوران و گیاهان به وجود آید.
هر چیزی از ذرات بسیار کوچکی به نام اتم ساخته شده است. وقتی نور خورشید بر یک شیء می تابد، این ذرات به حرکت یا جنبش در می آیند. حرکت اتم ها گرما تولید می کند و شیء گرم می شود.
اجسامی که تیره رنگ یا سیاه هستند، انرژی خورشید را بیشتر جذب می کنند و گرم تر می شوند. اما اجسام روشن یا سفید، مقداری زیادی از پرتوهای خورشید را بر می گردانند. برای همین، مردم در تابستان لباس های روشن و سفید می پوشند تا خیلی گرمشان نشود
 

جریان(dc)

تعریف

جریان مستقیم (DC یا جریان پیوسته)، عبور پیوسته جریان الکتریسیته از یک هادی نظیر یک سیم از پتانسیل بالا به پتانسیل کم است. در جریان مستقیم، بار الکتریکی همواره در یک جهت عبور می کند که این امر جریان مستقیم را از جریان متناوب (AC) متمایز می کند.

در واقع جریان مستقیم ابتدا برای انتقال توان الکتریکی پس از کشف تولید الکتریسیته در اواخر قرن 19 توسط توماس ادیسون بکار رفت. امروزه استفاده از جریان مستقیم برای این منظور غالباً کنار گذاشته شده است، چرا که جریان متناوب (که توسط نیکلا تسلا کشف و توسعه داده شده ) برای انتقال در طول خطوط بلند بسیار مناسب تر است (جنگ جریان ها را مشاهده کنید). هنوز هم انتقال توان DC برای اتصال شبکه های توان AC با فرکانس های مختلف به هم، بکار می رود.

DC عموماً در بسیاری از کاربرد های کم ولتاژ استفاده می شود، خصوصاً در جایی که انرژی از طریق باتری ها تامین می شود که تنها می توانند ولتاژ DC تولید کنند. اکثر سیستم های خودکار، از DC استفاده می کنند. اگرچه که ژنراتور یک وسیله AC است که از یک یکسو کننده برای تولید DC استفاده می کند. اغلب مدارات الکترونیکی نیاز به یک منبع تغذیه DC دارند. با وجود اینکه DC مخفف جریان مستقیم است اما کلاً به ولتاژهای با پلاریته ثابت، DC گفته می شود. برخی از انواع DC دارای تغییرات ولتاژ زیادی هستند، مانند خروجی دست نخورده یک یکسوساز. با عبور این خروجی از یک فیلتر RC پایین گذر، ولتاژ پایدار تری حاصل می شود.

معمولاً به دلیل ولتاژهای بسیار پایین بکار رفته در سیستم های جریان مستقیم، نصب آنها نیازمند پریزها، کلیدها و لوازم ثابت متفاوتی از آنچه که برای جریان متناوب به کار می رود است. در یک وسیله جریان مستقیم این نکته بسیار مهم است که پلاریته آنرا معکوس وصل نکنیم، مگر اینکه وسیله داری یک پل دیودی برای اصلاح این امر باشد. (که اکثر دستگاه های عمل کننده با باتری این امکان را ندارند.)

امروزه (سال 2000م) گرایشاتی در جهت سیستم های انتقال جریان مستقیم ولتاژ بالا (HVDC) ایجاد شده است. همچنین DC در سیستم های برق خورشیدی که توسط باتری های خورشیدی تغذیه می شوند، به کارمی رود.