Temperature Monitor

 
Temperature Monitor

Circuit : Andy Collinson
Email me

Description
A simple op-amp circuit that will trigger a relay when a preset temperature is reached. Please note that there is no hysteresis in this circuit, so that if the temperature changes rapidly, then the relay may switch rapidly.



Description
This circuit uses an ordinary NTC thermistor with a resistance of 47k at room temeperature. A suitable part from Maplin Electronics is FX42V. The circuit is set in balance by adjusting the the 47k potentiometer. Any change in temperature will alter the balance of the circuit, the output of the opamp will change and energize the relay. Swapping the position of the thermistor and 47k resistor makes a cold or frost alarm.

Calibration
At room temperature (25 degrees celcius) a 47k NTC thermistor resistance is approximately 47k. The non-inverting opamp input will then be roughly half the supply voltage, adjusting the 47k pot should allow the relay to close or remain open. To calibrate the device, the thermistor ideally needs to be at the required operating temperature. If this is for example, a hot water tank, then the resistance will decrease, one way to do this is use a multimeter on the resistance scale, read the thermistors resistance and then set the preset so that the circuit triggers at this temperature.

Please note that if the temperature then falls, the relay will de-energize. If the environment temperatures changes rapibly, then the relay may chatter, as there is no hysteresis in this circuit.

Hysteresis, allows a small amount of "backlash" to be tolerated. With a circuit employong hysteresis, there will be no relay chatter and the circuit will trigger at a defined temperature and require a different temperature to return to the normal state. Hysteresis can be applied to the circuit using feedback, try a 1Meg resistor between opamp output, pin 6 and the non-inverting input pin 2 to give the circuit hysteresis.

2SC1946A 30 Watt VHF Amplifier

 
2SC1946A 30 Watt VHF Amplifier
Circuit : David Celestin, Ghana, West Africa
Email : mightycelestin@yahoo.co.uk

Webmasters Note:
Operating an unlicensed transmitter is illegal in some countries, including the UK. The circuit presented here is for educational purposes only, neither the webmaster or David Celestin can be held responsible for any mis-use regarding this circuit, please also see the disclaimer on this site.


Description:
The 30 watt amplifier schematic shown below provides an appropriate power boost with an input of 4 watt up to 6 watts. The circuit is designed to cover 88-108MHz FM Broadcast Band. However, the circuit is very stable at my place and provides a clean-output through seven (7) element Butter-worth low-pass filter.

Notes:
The heart of the circuit is 2SC1946A VHF RF power transistor. The transistor is specifically designed for operation in frequencies up to 175 MHz, with very good results.
As you can see, the power line is well decoupled. The amplifier current can be over 5 amps. All the coils are made from 16gauge laminated wire (or Silver copper wire can do best) and the RFC can be of HF toroid core (as shown in the picture) or 6 holes ferrite bead.C3 and R1 forms snubber circuit while R2 and C6 prevent the amplifier from self-oscillation at VHF, sometimes you need to add 180 ohms in parallel with L7.That will cause the amplifier to dissipate UNDESIRABLE VHF thereby reducing spurious level.

The photo below is 60Watts VHF power amplifier using the above circuit. Two of 2SC1946A transistors are arranged at 90 degrees to each other and their outputs are combined using "Power Combiner Network”. It is quite difficult to combine powers at VHF and UHF bands.


Click Image to zoom.


However, I recommend that hobbies should stick to single power design due to its complicity and large rate of INTERFERENCE. (in attempt to go for double transistors which involves power combiner network).  Since the two amplifiers are operating in different phase (out of phase).

Tuning:
Tuning of the amplifier is not hard at all. You just have to connect the output to a good antenna with a transmission line (RG214) of 50 ohms. First match the output network, and then do the same to the input network for a maximum power output. By way of adjustment, you can increase the output at its operating frequency.

Return to RF Circuits

TV Transmitter

 
TV Transmitter


Circuit: David Kwaku Celestin - Ghana, West Africa
Email: mightycelestin@yahoo.co.uk

Description:
A VHF band TV transmitter using negative sound modulation and PAL video modulation. This is suitable for countries using TV systems B and G.

Webmasters Note: This circuit will be illegal in some countries, please read the disclaimer on my site.

tv transmitter


Notes:
The frequency of the transmitter lies within VHF and VLF range on the TV channel, however this circuit has not been tested at UHF frequencies. The modulated sound signal contains 5.5 -6MHz by tuning C5. Sound modulation is FM and is compatible with UK System I sound. The transmitter however is working at VHF frequencies between 54 and 216MHz and therefore compatible only with countries using Pal System B and Pal System G.

For more information on TV systems visit the links below:
Television Frequency Table

Televison system frequency and channel standards.

Return to RF Circuits

Transistor Transmitter

 

2 Transistor Transmitter

Circuit : Rob
Email:   radiorob007@hotmail.com Dutch only please!
Web:   Rob's home page
Notes:   Andy Collinson

Description:
A compact 2 transistor transmitter for use at VHF frequencies.

2 Transistor Transmitter

Notes:
Transistor T1 works as an audio preamplifier, gain is fixed at approximately R2/R1 or 100 times. The audio input is applied at the points LF in (on the diagram). P1 works as gain control. After amplification this audio signal now modulates the transmitter built around T2. Frequency is tunable using the trimmer CT and L1 is made using 3 turns of 1mm copper wire wound on a 5mm slug. The modulated signal passes via C6 to the antenna. A dipole can be made using 2 lengths of 65cm copper pipe. A DC power supply in the range 3 to 16 volts is required.

Return to RF Circuits

AM Transmitter

 

AM Transmitter



Notes:
Please read the disclaimer on this site before making any transmitter circuit. It is illegal to operate a radio transmitter without a license in most countries. This ircuit is deliberately limited in power output but will provide amplitude modulation (AM) of voice over the medium wave band.
The circuit is in two halfs, an audio amplifier and an RF oscillator. The oscillator is built around Q1 and associated components. The tank circuit L1 and VC1 is tunable from about 500kHz to 1600KHz. These components can be used from an old MW radio, if available. Q1 needs regenerative feedback to oscillate and this is achieved by connecting the base and collector of Q1 to opposite ends of the tank circuit. The 1nF capacitor C7, couples signals from the base to the top of L1, and C2, 100pF ensures that the oscillation is passed from collector, to the emitter, and via the internal base emitter resistance of the transistor, back to the base again. Resistor R2 has an important role in this circuit. It ensures that the oscillation will not be shunted to ground via the very low internal emitter resistance, re of Q1, and also increases the input impedance so that the modulation signal will not be shunted. Oscillation frequency is adjusted with VC1.
Q2 is wired as a common emitter amplifier, C5 decoupling the emitter resistor and realising full gain of this stage. The microphone is an electret condenser mic and the amount of AM modulation is adjusted with the 4.7k preset resistor P1.
An antenna is not needed, but 30cm of wire may be used at the collector to increase transmitter range.


Return to RF Circuits

UHF Preamplifier

 

UHF Preamplifier

This circuit is designed to work at UHF frequencies in the range 450-800MHz. It has a gain of around 10dB and is suitable for boosting weak TV signals. The circuit is shown below:-

UHF Preamp Circuit


The MPSH10 transistor used is available from Maplin Electronics order code CR01B. Alternatives that may be used instead are BF180 and BCY90. The tuned circuit comprising the 15nH inductor and 2.2pF capacitor resonate in the centre of the UHF band. The 2.2pF capacitor may be exchanged for a 4.7pF or a trimmer capacitor of 2-6pF to improve results. The approximate frequency response is shown below. N.B. This is a simulated response using the TINA program produced by using a swept 20uV input swept over the frequency range 400-800MHz. Output was measured into a 1k source and the frequency generator has a 75ohm impedance.

UHF Bode Plot


Construction

The coil is half a turn of 18-20 SWG copper wire bent around a half inch drill bit. This ensures a low Q and therefore broad tuning. High frequency work requires special construction techniques to avoid instability (unwanted oscillations) caused by feedback from output to input. Veroboard is not suitable for this project as the capacitance between tracks is around 0.2pF. A better approach is to use tag-strip or a PCB. The circuitry should be enclosed in a metal case and a screen made between input and output. As the transistor is used in common base mode,its low input impedance is a good match for 50-75 ohm coax cable, whilst at the same time providing full voltage gain to the upper frequency limit of the device. The 15nH inductor load, having almost a short circuit impedance at DC, has an impedance of 56ohms at 600MHz. This inductance and 2.2pF capacitor form a tank circuit at the transistors collector, providing maximum gain at resonance. Note however that the voltage gain will be reduced under load, when the circuit is connected to the input of a TV set or a very long piece of coaxial cable for example. Hence the simulated Tina plot.

Return to RF Circuits

Transistor Transmitter

 
4 Transistor Transmitter



Circuit Notes:
This circuit provides an FM modulated signal with an output power of around 500mW.  The input
Mic preamp is built  around a couple of 2N3904 transistors, audio gain limited by the 5k preset.
The oscillator is a colpitts stage, frequency of oscillation governed by the tank circuit made from
two 5pF capacitors and the inductor.  ( Click here for Colpitt Oscillator Resonant Frequency Equation.)
Frequency is around 100Mhz with values shown.

  Audio modulation is fed into the tank circuit via the 5p capacitor, the 10k resistor and 1N4002
controlling the amount of modulation.  The oscillator output is fed into the 3.9uH inductor which
will have a high impedance at RF frequencies.

The output stage operates as a class D amplifier , no direct bias is applied but the RF signal developed
across the 3.9uH inductor is sufficient to drive this stage. The emitter resistor and 1k base resistor
prevent instability and thermal runaway in this stage.
 

Paul K. Sherby
Belleville,
Michigan.
USA
Website:- http://www.geocities.com/Eureka/Park/5323
 
 

Back to RF Circuits

FM Transmitter from David Sayles

 

FM Transmitter from David Sayles

Circuit : David Sayles
Email: All enquiries via anc@mitedu.freeserve.co.uk


Description:
A small FM voice transmitter for Band 2 VHF

fm transmitter


Notes:
This small transmitter uses a hartley type oscillator. Normally the capacitor in the tank circuit would connect at the base of the transistor, but at VHF the base emitter capacitance of the transistor acts as a short circuit, so in effect, it still is. The coil is four turns of 18swg wire wound around a quarter inch former. The aerial tap is about one and a half turns from the supply end. Audio sensitivity is very good when used with an ECM type microphone insert.

Return to RF Circuits

Transistor FM Voice Transmitter

 

2 Transistor FM Voice Transmitter

Warning:
Take care with transmitter circuits. It is illegal in most countries to operate radio transmitters without a license. Although only low power this circuit may be tuned to operate over the range 87-108MHz with a range of 20 or 30 metres.



Notes:
I have used a pair of BC548 transistors in this circuit. Although not strictly RF transistors, they still give good results. I have used an ECM Mic insert from Maplin Electronics, order code FS43W. It is a two terminal ECM, but ordinary dynamic mic inserts can also be used, simply omit the front 10k resistor. The coil L1 was again from  Maplin, part no. UF68Y and consists of 7 turns on a quarter inch plastic former with a tuning slug. The tuning slug is adjusted to tune the transmitter. Actual range on my prototype tuned from 70MHz to around 120MHz. The aerial is a few inches of wire. Lengths of wire greater than 2 feet may damp oscillations and not allow the circuit to work. Although RF circuits are best constructed on a PCB, you can get away with veroboard, keep all leads short, and break tracks at appropriate points.

One final point, don't hold the circuit in your hand and try to speak. Body capacitance is equivalent to a 200pF capacitor shunted to earth, damping all oscillations. I have had some first hand experience of this problem. The frequency of oscillation can be found from the theory section,and an example now appears in the Circuit Analysis section.


Return to RF Circuits

Medium Wave Active Antenna

 

Medium Wave Active Antenna

Circuit : David Sayles
Text : Andy Collinson
Email: All enquiries via anc@mitedu.freeserve.co.uk




Notes
This circuit is designed to amplify the input from a telescopic whip antenna. The preamplifier is designed to cover the medium waveband from about 550Khz to 1650Khz. The tuning voltage is supplieb via RV2, a 10k potentiometer connected to the 12 Volt power supply.

RV1 is the gain control allowing weak signals to be amplified or strong signals to be attenuated. The control voltage is applied to gate 2 of TR1, a dual-gate MOSFET, the signal voltage applied via gate 1; the input signal being double tuned via the 330uH coil and the two KV1235 varicap diodes at the MOSFET's input and by the same components at the BF981 MOSFET's drain terminal. Both tuned circuits provide high selectivity across the entire tuning range. To aid stability the MOSFET stage is fed from a 6.2V zener stabilized supply.

To drive low impedance (50 ohm) receivers, the medium output imepedance of the BF981 stage is enhanced by the composite amplifier made from Q2 and Q3. Q2 is operating in common emitter boosting voltage levels by just over 2, Q3 is operating in emitter follower providing the circuit with low output impedance.

Finally this active antenna can be used on other bands by changing the values of the 330uH coils. To perform on multiple bands switches or relays can be used to change the value of the coils.

Return to RF Schematics

AM Receiver

 
AM Receiver
Description:
This is a compact three transistor, regenerative receiver with fixed feedback. It is similar in principle to the ZN414 radio IC which is now replaced by the MK484. The design is simple and sensitivity and selectivity of the receiver are good.



Notes:
All general purpose transistors should work in this circuit, I used three BC549 transistors in my prototype. The tuned circuit is designed for medium wave, but the circuit will work up to much higher frequencies if a different tuning coil and capacitor are used. I used a ferrite rod and tuning capacitor from an old radio which tuned from approximately 550 - 1600kHz. Q1 and Q2 form a compund transistor pair featuring high gain and very high input impedance. This is necessary so as not to unduly load the tank circuit. Q1 operates in emitter follower, Q2 common emitter, self stabilizing bias is via the 120k resistor and the tuning coil.

The 120k resistor provides regenerative feedback,between Q2 output and the tank circuit input and its value affects the overall performance of the whole circuit. Too much feedback and the circuit will become unstable producing a "howling sound". Insufficient feedback and the receiver becomes "deaf". If the circuit oscillates,then R1's value may be decreased; try 68k. If there is a lack of sensitivity, then try increasing R1 to around 150k. R1 could also be replaced by a fixed resisor say 33k and a preset resistor of 100k. This will give adjustment of sensitivity and selectivity of the receiver.

Transistor Q3 has a dual purpose; it performs demodulation of the RF carrier whilst at the same time, amplifying the audio signal. Audio level varies on the strength of the received station but I had typically 10-40 mV. This will directly drive high impedance headphones or can be fed into a suitable amplifier.

Construction:
All connections should be short, a veroboard or tagstrip layout are suitable. The tuning capacitor has fixed and moving plates. The moving plates should be connected to the "cold" end of the tank circuit, this is the base of Q1, and the fixed plates to the "hot end" of the coil, the juction of R1 and C1. If connections on the capacitor are reversed, then moving your hand near the capacitor will cause unwanted stability and oscillation.

Finally here are some voltage checks from my breadboard prototype.This should help in determining a working circuit:-
All measurements made with a fresh 9volt battery and three BC109C transistors with respect to the battery negative terminal.

Q1 (b) 1.31V
Q2 (b) 0.71V
Q2 (c) 1.34V
Q3 (b) 0.62V
Q3 (c) 3.87V
Return to RF Circuits

Repeating Timer No.2

 

Repeating Timer No.2

Circuit : Ron J
Email Ron

Description:
This circuit is based on a simple asymmetric oscillator. The length of time the relay remains energized - and the length of time it remains de-energized - are set independently. With the component values shown in the diagram - both periods are adjustable from about 1 to 30 minutes.

Repeating Timer No.2 - Schematic


Setting The Timer:
The frequency of the Astable Oscillator depends on the value of C1 and the speed at which it charges and discharges through the resistor network. The length of time the relay remains energized is controlled by R2. And the length of the time it remains de-energized is controlled by R3.

Owing to manufacturing tolerances - the precise length of the time periods available depends on the characteristics of the actual components you've used. R1 & R4 set the minimum period lengths at about 1-minute - while R2 & R3 set the maximum periods at about 30-minutes. You can choose component values that suit your own requirements. If your time periods don't need to be too precise - and more-or-less is close enough - you can leave out the pots altogether - and simply rely on R1 & R4 to set the times.

Alternative Capacitor:
A regular electrolytic capacitor is polarised. If the charge on its plates is the wrong way round - DC current will flow through the capacitor. If the current is high enough - the capacitor will heat up and explode.

When the oscillator is running - the polarity of the charge on C1 keeps reversing. So C1 needs to be non-polarised. However - you can simulate a non-polarised 470uF capacitor by connecting two 1000uF polarised capacitors back to back - as shown. How and why this works is explained in the Detailed Circuit Description. Because non-polarised capacitors aren't widely available - the prototype was built using two polarised capacitors.

Important
Do not use the "on-board" relay to switch mains voltage. The board's layout does not offer sufficient isolation between the relay contacts and the low-voltage components. If you want to switch mains voltage - mount a suitably rated relay somewhere safe - Away From The Board. I've used a SPCO/SPDT relay - but you can use a multi-pole relay if you wish.


Veroboard Layout:
The Stripboard Layout For 
The Repeating Timer No.2


The timer is designed for a 12-volt power supply. However - it will work at anything from 5 to 15-volts. All you need do is select a relay to suit your supply voltage. The Cmos gates are being used as simple inverters. So - although I've used a Cmos 4093 in the circuit diagram - a Cmos 4001 or Cmos 4011 will work just as well.

The Support Material for this circuit includes a step-by-step guide to the construction of the circuit-board - a parts list - a detailed circuit description - and more.

Return to Timing Circuits

555 Pulse Generator

 

555 Pulse Generator

Circuit : Miroslav Adzic - Serbia & Montenegro

Description:
A 555 pulse generator circuit with a difference, the initial pulse is tailored by additional circuitry to match the duration of subsequent pulses.

single pulse gen


Notes:
The NE555 and the First Pulse

The first positive pulse from a classic 555-based oscillator is always 1.6 times longer than the following pulses. The difference is caused by the fact that only during the first cycle C2 starts charging up from 0 V. This is generally not a problem, but sometimes this first pulse just should be the same length as the rest - at least approximately.

The picture shows the oscillator and an addition to it (everything to the right from the Vs-Gnd axis) that can solve the problem. Immediately after switch-on, C2 is empty and the voltage on the gate of Q2 is low. Q2 is off and it makes C2 charge up very quickly through Q1 and R3 until it reaches just below Vs/3. Then Q2 turns on, Q1 turns off, and the classic circuit continues to charge and discharge C2 relatively slowly between 2Vs/3 and Vs/3. As the voltage on C2 never again drops below Vs/3, Q2 now conducts all the time and Q1 is permanently off.

A MOSFET with a lower D-S resistance would charge up C2 even quicker.

The component values may be critical. For best results, the R5/R7 voltage divider should turn Q2 on when C2 is charged up to just a little below Vs/3. This point is set by the R5/R7 ratio. But if the value of R5 is too high or if R7 is too small (depending on the supply voltage and the G-S threshold voltage of Q2), the oscillator may not work at all. The sum of R5 and R7 should be as high as possible in order to minimize the influence on the main part of the circuit after the first pulse.

Return to Timing Circuits

24 Hour Timer

 

24 Hour Timer

Circuit : Ron J
Email Ron

Description:
These two circuits are multi-range timers offering periods of up to 24 hours and beyond. Both are essentially the same. The main difference is that when the time runs out, Version 1 energizes the relay and Version 2 de-energizes it. The first uses less power while the timer is running; and the second uses less power after the timer stops. Pick the one that best suits your application.

24 Hour Mk1
24 hour Mk2


Notes:
The Cmos 4060 is a 14 bit binary counter with a built in oscillator. The oscillator consists of the two inverters connected to Pins 9, 10 & 11; and its frequency is set by R3, R4 & C3.The green Led flashes while the oscillator is running: and the IC counts the number of oscillations. Although it's a 14 bit counter, not all of the bits are accessible. Those that can be reached are shown on the drawing.

By adjusting the frequency of the oscillator you can set the length of time it takes for any given output to go high. This output then switches the transistor; which in turn operates the relay. At the same time, D1 stops the count by disabling the oscillator. Ideally C3 should be non-polarized; but a regular electrolytic will work, provided it doesn't leak too badly in the reverse direction. Alternatively, you can simulate a non-polarized 10uF capacitor by connecting two 22uF capacitors back to back (as shown).

Using "Trial and Error" to set a long time period would be very tedious. A better solution is to use the Setup tables provided; and calculate the time required for Pin 7 to go high. The Setup tables on both schematics are interchangeable. They're just two different ways of expressing the same equation.

For example, if you want a period of 9 Hours, the Range table shows that you can use the output at Pin 2. You need Pin 2 to go high after 9 x 60 x 60 = 32 400 seconds. The Setup table tells you to divide this by 512; giving about 63 seconds. Adjust R4 so that the Yellow LED lights 63 seconds after power is applied. This will give an output at Pin 2 after about 9 Hours.

The Support Material for the timers includes a detailed circuit description - parts lists - a step-by-step guide to construction - and more. A suitable Veroboard layout for each version is shown below:

layout mk1
layout mk2


The timer was designed for a 12-volt supply. However, provided a suitable relay is used, the circuit will work at anything from 5 to 15-volts. Applying power starts the timer. It can be reset at any time by a brief interruption of the power supply. The reset button is optional; but it should NOT be used during setup. The time it takes for the Yellow LED to light MUST be measured from the moment power is applied. Although R1, R2 and the two LEDs help with the setup, they are not necessary to the operation of the timer. If you want to reduce the power consumption, disconnect them once you've completed the setup. If you need a longer period than 24-hours, increase the value of C3.

Return to Timing Circuits

NE555 Basic Monostable

 

NE555 Basic Monostable

Notes:
Here the popular 555 timing IC, is wired as a monostable. The timing period is precise and equivalent to:-

1.1 x R1 x C1


With component values shown this works out at approximately 1.1msec.The output duration is independant of the input trigger pulse, and the output from the 555 is buffered and can directly interface to CMOS or TTL IC's, providing that the supply voltages match that of the logic family.



The timing diagram above shows the output pulse duration, the trigger input and the output at the discharge terminal of the IC.
Return to Timing Circuits

Bench Amplifier

 

Bench Amplifier

Circuit : Andy Collinson
Email me

Description:
A small 325mW amplifier with a voltage gain of 200 that can be used as a bench amplifier, signal tracer or used to amplify the output from personal radios, etc.



Notes:
The circuit is based on the National Semiconductor LM386 amplifier. In the diagram above, the LM386 forms a complete non-inverting amplifier with voltage gain of x200.

A datasheet in PDF format can be downloaded from the National Semiconductor website. The IC is available in an 8 pin DIL package and several versions are available; the LM386N-1 which has 325mW output into an 8 ohm load, the Lm386N-3 which has 700mW output and the LM386N-4 which offers 1000mW output. all versions work in this circuit.

The gain of the Lm386 can be controlled by the capacitor across pins 1 and 8. With the 10u cap shown above, voltage gain is 200, omitting this capacitor and the gain of the amplifier is 20.

The IC works from 4 to 12Volts DC, 12Volt being the maximum recommended value. The internal input impedance of the amplifier is 50K, this is shunted with a 22k log potentiometer so input impedance in this circuit will be lower at about 15k. The input is DC coupled so care must be taken not to amplify any DC from the preceeding circuit, otherwise the loudspeaker may be damaged. A coupling capacitor may included in series with the 22k control to prevent this from happening.

The finished circuit.
fig19


Step by step instructions on how to produce this amplifier now appear in my practical section. Click this direct link to the page.
Return to Test Gear

Two Simple Crystal Test Circuits

 

Two Simple Crystal Test Circuits

Circuit : Andy Collinson
Email me

Description:
Two simple test circuits to check operation of quartz crystals.



Notes:
In the first circuit, above the BC548 is wired as a colpitts oscillator, the frequency tuned by insertion of a crystal. A good crystal will create high frequency oscillations, the output at the collector is rectified by the germanium OA91 diode and a deflection will appear on the meter. Thw more active the crystal, the higher the output deflection which may be adjusted with the preset.



Notes:
The next circuit uses a working crystal again used to control the frequency of a colpitts oscillator. This time the output from the oscillator is taken from the emitter and is full wave rectified, the small dc bias will then directly cause the second BC548 to light the LED.

Return to Test Circuits

Multi Wire Cable Tester

 
Multi Wire Cable Tester
Circuit : Andy Collinson
Email me

Description:
A multi wire cable tester with a separate LED for each wire. Will show open circuits, short circuits, reversals, earth faults, continuity and all with four IC's. Designed initially for my intercom, but can be used with alarm wiring, CAT 5 cables and more.

Full circuit can be viewed with resolution of 1024x768
IC Pinouts of the 4011 and 4017 can also be viewed here

cable tester


Circuit Notes
Please note that for clarity this circuit has been drawn without showing power supplies to the CMOS 4011 and CMOS 4050 IC's. The positive battery terminal connects to Pin 14 of each IC and negative to Pin 7. The CMOS 4017 uses Pin 16 and Pin 8 respectively. Note also that as the CMOS 4050 is only a hex buffer, you need 8 gates so two 4050's are required, the unused inputs are connected to ground (battery negative terminal).

Circuit Description
The circuit comprises transmitter and receiver, the cable under test linking the two. The transmitter is nothing more than a "LED chaser" the 4011 IC is wired as astable and clocks a 4017 decade counter divider. The 4017 is arranged so that on the 9th pulse,the count is reset. Each LED will light sequentially from LED 1 to LED 8 then back to LED 1 etc. As the 4017 has limited driving capabilities, then each output is buffered by a 4050. This provides sufficient current boost for long cables and the transmitter and receiver LED's. The receiver is simply 8 LED's with a common wire...read on.

Wiring the CMOS 4017
The pinout for the CMOS 4017B is shown below. Please note that in the main schematic above, alternate naming of the pins has been used. The pin eqivalence is as follows:-

4017

CP0 (clock pulse zero) is the Clock input, Pin 14 on the diagram above.
CP1 (clock pulse one) is the clock inhibit or Pin 13 on the pinout above.
MR (master reset) is the reset pin 15 in the diagram above.
Q0-9 represent the decoded decimal outputs. Hence Q0 is Pin 3 on the pinout and Q8 is Pin9.

7 Led's 8 Wires
Not a mistype. The problem with testing each wire individually is that if you had 7 individually addressable LED's, then you would need an eighth return or common wire. In the case of testing 8 wires you would need a ninth wire. You could use a domestic earth but its not really practical, and also if the cable was shorting to earth anyway it would be no good anyway. The solution had me thinking for a while, but since this is a logic circuit, there are only two conditions, logic high or zero. As the 4017 outputs are either high or low, any output can provide a common return path for a LED. So LED's 1 - 3 use the 4th output of the 4017, which will be zero, and the 4th LED is wired with reverse polarity. On the 4th pulse, output 4 is high, output 3 is low and so the LED will light. If the common return wire is open circuit then LEDs 1-4 will not light. A similar situation occurs with outputs 5 to 8. The common wire in can be taken from any output terminal from the 4017, but the same rule would still apply. The ability to test all wires quickly outweighs this small disadvantage. If a cable of just 4 or 6 wires is tested then it must use the wires with LED's numbered 1 to 4 or 1 to 6, which is why the LED's are numbered that way.

Testing
With a good cable and all wires connected then LED 1 will light at both cable ends, followed in sequence by LED 2 ,3, 4 etc to LED 8, the sequence then repeating. If a 4 wire cable is used, it must be connected to use the common return wire as described in the preceeding paragraph. The sequence would be LED 1,2,3,4 repeating with a delay as the 4 unused outputs are stepped through.
To check for earth contact faults, the probe labeled "to earth connection" would be physically connected to a local earth. A wire that is earthing will dim or extinguish the LED's at both ends of the cable. An LED not lighting at the receiver, indicates a broken or open circuit. If two wires are short circuit, example 3 and 4 then at the receiver the sequence would be 1, 2, 34, 43, 5, 6, 7, 8. A reversal would be indicated by an out of pattern sequence of LED's. Here's an example, the probe is connected to an earth at the transmitter, the cable is very faulty, wire 1 is OK, 2 is earthing, 3 and 5 are reversed 4 is OK, 6 is open circuit and 7 and 8 are short circuit. See below.

wires


Test Result for Above Faulty Cable:
The transmitter pattern:                         The receiver pattern would be:
            1 ON                                             1 ON
            2 OFF or Faint                                   2 OFF or faint
            3 ON                                             3 (would show LED 5)
            4 ON                                             4 ON
            5 ON                                             5 (would show LED 3)
            6 ON                                             6 OFF
            7 ON                                             7 (would show 7 & 8)
            8 ON                                             8 (would show 7 & 8)
     
The LED sequence of course is stepped through, as you know the transmitter "pattern" it is easy to tell the state of the cable by viewing the receiver pattern. The earth condition will only show up if the contact to earth is less than 1000 ohms, a better but more time consuming method foe earth faults is to use a meter on the Megaohms range.

Return to Testgear

Function Generator

 
Function Generator
Circuit : Andy Collinson
Email me

Description:
A function generator using the ICL8038 integrated circuit. Is has four ranges and capable of sine, square and triangle outputs.

Function Generator Circuit


Notes:
Built around a single 8038 waveform generator IC, this circuit produces sine, square or triangle waves from 20Hz to 200kHz in four switched ranges. There are both high and low level outputs which may be adjusted with the level control. This project makesa useful addition to any hobbyists workbench as well.

Allof the waveform generation is produced by IC1. This versatile IC even has a sweep input, but is not used in this circuit. The IC contains an internal squarewave oscillator, the frequency of which is controlled by timing capacitors C1 - C4 and the 10k potentiometer. The tolerance of the capacitors should be 10% or better for stability. The squarewave is differentiated to produce a triangular wave, which in turn is shaped to produce a sine wave. All this is done internally, with a minimum of external components. The purity of the sine wave is adjusted by the two 100k preset resistors.

The wave shape switch is a single pole 3 way rotary switch, the wiper arm selects the wave shape and is connected to a 10k potentiometer which controls the amplitude of all waveforms. IC2 is an LF351 op-amp wired as a standard direct coupled non-inverting buffer, providing isolation between the waveform generator, and also increasing output current. The 2.2k and 47 ohm resistors form the output attenuator. At the high output, the maximum amplitude is about 8V pk-pk with the square wave. The maximum for the triangle and sine waves is around 6V and 4V respectively. The low amplitude controls is useful for testing amplifiers, as amplitudes of 20mV and 50mV are easily achievable.

Setting Up:
The two 100k preset resistors adjust the purity of the sine wave. If adjusted correctly, then the distortion amounts to less than 1%. The output waveform ideally needs to be monitored with an oscilloscope, but most people reading this will not have access to one. There is however, an easy alternative:- Winscope. This piece of software uses your soundcard and turns your computer into an oscilloscope. It even has storage facility and a spectrum analyser, however it will only work up to around 20KHz or so. Needless to say, this is more than adequate for this circuit, as alignment on any range automatically aligns other ranges as well. Winscope is available at my download page click here. Winscope is freeware and designed by Konstantin Zeldovich. After downloading, read the manual supplied with winscope and make up a lead to your soundcard. My soundcard is a soundblaster with a stereo line input, i made up a lead with both left and right inputs connected together. Connect the lead to the high output of the function genereator, set the output level to high, shape to sine, and use the 1k to 10k range, (22nF capacitor). A waveform should be displayed, see the Figure 1 below:-


Figure 1.

Here an undistorted sine wave is being displayed. The display on winscope may flicker, this is normal as it uses your soundcard to take samples of the input waveform. The "hold" button on winscope will display a steady waveform.

Alignment:
First adjust the 100k preset connected to Pin 1 of the 8038. An incorrect setting will look similar to the waveform below:-

Adjust the preset so that the top of the sine wave has a nicely rounded peak. Then adjust the other preset, again an incorrectly adjusted waveformis shown below:

The two presets work together, so adjusting one affects the other. A little is all that's needed. When your waveform is asjusted and looks similar to Figure 1 press the FFT button on winscope. This will preform a fast fourier transform and the displayed output will be a spectrogram of the input.For a pure sine wave, only one signal is present, the fundamental frequency, no harmonics will be present and so a spectrogram for a pure sine should contain a single spike, see Figure 2 below:-


Figure 2.

A distorted sine wave will contain odd and even harmonics, and although the shape of the sine may look good, the spectrogram will reveal spikes at the hormonics, see below:-

Once alignment of the sine wave is complete, the other wave shapes will also be set up correctly. Below is a picture of the triangle waveform generated from my circuit:-

Finally the ICL8038PCD is available from Maplin Electronics order code YH38R.

Return to Test Gear

Infra Red Extender Mark 5

 

Infra Red Extender Mark 5

Circuit : Andy Collinson
Email me

Description:
The latest addition to my collection of Infra Red (IR) Repeater circuits. The Mark 5 is a much improved version of the Mark 1 circuit and has increased range and sensitivity. It is also immune to the effects ofambient light, daylight and other forms of interference. In addition it works with IR modulation freuencies in the range 30 to 120kHz making the Mk5 circuit the best choice for compatibility with remote controls.



Parts List:
R1,R2: 5M6 RESISTOR (2)
R3,R5: 3k3 RESISTOR (2)
R4: 120k RESISTOR (1)
R6: 220R RESISTOR (1)
R7: 47k RESISTOR (1)
R8: 120R RESISTOR (1)
R9: 10k RESISTOR (1)
R10: 2K2 RESISTOR (1)
R11: 100R RESISTOR 1 W (1)
C1,C3,C4: 22n polyester CAP (3)
C2: 100u electrolytic 25V(1)
C5: 100u electrolytic 25V(1)
Q1 BC107 (1) alternatives, BC107A, 2N2222, 2N2222A
Q2 BC109C (1) alternatives, BC109, BC549
D1: 1N4148 DIODE (1)
D2: Red LED (1)
IC1,IC2 CA3140E opamp (1)
IR1: SFH2030: (1)
IR2,3: TIL38 (2) or similar.

Design Philosophy:
This time I have returned to "first principles" and built a wideband infra red (IR) preamp which receives and re-transmits the entire baseband signal from a remote control handset.

It is designed to work with IR controls using 30-120KHz and should therefore work with just about any handset. In addition I have separated ambient (surrounding) light from the modulated light used by a remote handset. The major problem with the Mark 1 circuit is that it reacts to all light sources, ambient light producing a continous signal from the IR photo diode and is amplified by the rest of the circuit. I have published a modification to the original Mark 1 circuit, click here to view.

Noise Immunity:
It is difficult working with Infra Red, you cannot see it, and it is difficult to measure. A major barrier with this circuit was how to differentiate between daylight and an IR signal. Ambient light produces an almost continuous signal, changing little over several hours. A signal from an IR handset contains control pulses modulated with a carrier frequency (typically 36kHz) transmitted using an Infra Red photo diode. My solution used here, is a simple RC filter formed by C1 and R3.

At low frequency i.e. 50Hz the impedance of C1 is high, around 144k. The voltage gain of inverting op-amp IC2 is approximately R4 / R3, but at low frequency C1 is in series with R3 so the gain is now 120k / (3.3k + 144k) or less than unity. Daylight or ambient light will change slowly over several hours, in frequency terms this signal would be millihertz or less and C1's impedance will be megaohms.

A signal from an IR handset will be modulated at around 36KHz. At this frequency the impedance of C1 is very low, around 200 ohms. This has little effect on the input impedance of the op-amp stage and voltage gain will now be R4 / R3 or about 34 times. The impedance of capacitor C4 also helps noise rejection as its impedance change will allow more signal to pass into Q1 base at high frequencies and much less signal at line frequencies.

Circuit Details:
Light photons are received at IR1, this is an IR photo diode type SFH2030. A SFH2030F, which contains a daylight filter,may also be used instead of the SFH2030. The photo diode is reverse biased and when light strikes it, the energy of the IR signal releases additional charge carriers within the diode, allowing more current to flow. This current is amplified and converted to a voltage by the first CA3140 opamp, IC1. IC1 is wired as a current to voltage convertor, see below.



In an ideal current to voltage convertor the output voltage would be the product Rf multiplied by the input current. The non-inverting input would be tied to ground. In the Mark 5 circuit the output voltage is iR1 or about 5.6 Volts/uA appearing at pin 6 of IC1. The current generated by the SFH2030 photo diode when receiving a signal from a handset several metres away is less than 50 nA and requires the extreme high input impedance to avoid shunting the signal. There are two reasons for using the CA3140, the first is its high input impedance, over 1000G. The second reason is that normally the non-inverting input would be at 0V when working from split + and - supplies. In this single supply version the non-inverting input is returned to negative supply via R2. This can only be done with a Mosfet input, hence the choice for using the CA3140.

IC1 converta all current from the photo diode IR1 into a voltage. Although the SFH2030 is most sensitive at infra red wavelengths, it will produce tiny currents from daylight and also the 50/60Hz noise fields from flourescent and mains lighting. To minimize this, C1 and R3 form a high pass filter, allowing a 30kHz and higher signals to pass but blocking low frequencies. The impedance of C1 increases with decreasing frequency being 31k at 50Hz. Daylight for example, produces a contstant luminence, changing slowly over several hours, to which the impedance of C1 is effectively infinite.

The signal voltage from IC1 is now further amplified by IC2, gain being the ratio R4/R3 or 31dB. All opamps have a limit called the gain bandwidth product. The gain will fall to unity at the highest usuable frequency and be a maximum value at dc. Between these limits the gain falls with increasing frequency as shown in the bode plot for the CA3140 below:

ca3140 bode plot


Looking at the chart above, at 100kHz the maximum gain can only be about 30dB. However this is ample and boosts the received range of signals from a remote handset to the photo diode which have worked well up to 4 metres apart. Because R5 is returned to the negative supply a Mosfet input opamp must again be used. The output is again filtered by a high pass filter comprising C4 and the associated input impedance of Q1. R6, C2 and C3 provide decoupling for the IR preamplifier, C3 is in parallel with C2 because an electrolytic is not always a low impedance at high frequencies.

The IR output stage is comprised of Q1 and Q2 and associated components. The output is arranged so that with no input signal, Q1 is on and Q2 off; the visible LED, D2 will also be off. With no signal the 47k resistor biases the driver transistor, Q1 into full conduction. Its collector voltage will be near zero volts and the output transistor Q2, which is direct coupled to Q1 collector will therefore be fully off. Power drain will be minimal.

When an IR signal is receieved from a handset, the complete modulated signal will be amplified and fed via C4 into Q1 base. This is sufficiently strong enough to overcome the positive bias supplied by R7 and switch off Q1. This will happen many times a second, at the same frequency as the IR modulating signal sent by the handset. As Q1 switches off, its collector voltage rises to near full supply switching on Q1 and lighting the LED D2. Pulses of infra red at the same modulating frequency are then transmitted by the photo emitting diodes, IR2 and IR3. Because the signal is cleaner, (i.e. no daylight or 50/60Hz lamp fields included) then the series resistor R11 has been incresed in value to 100 ohms. The range from photo emitter diode to the equipment to be controlled has proved successfull at over 4 metres when powered from a 12 Volt supply. D1 helps to improve the turn off speed of Q1, thereby ensuring that the output waveform will be "squarer". It can be omitted but the circuit will perform better if D1 is included. A simulated transfer characteristic is shown below:

AC Transfer Charcteristic

ac_transfer


The ouput is measured between Q2 emitter and ground. A simulated transient response is shown below. Three graphs are produced with excitations of 40,80 and 120kHz.

mk5 transient


Please note that the above waveforms are simulated using a perfect square wave input, with rise and fall times of zero seconds. The output is measured between Q2 emitter and ground with a 200 ohm resistive load. In the real world, the cable to the remote photo emitter LED's will contain both capacitance and inductance. This will increase both rise and fall times of the output signal. As with the Mark 1 circuit I recommend using speaker wire or bell wire to be used to cable the remote photo emitters.

My Prototype

Note that the veroboard layout below only includes the componets from the left of the schematic to C4, I had Q1 and Q2 on breadboard during this testing phase.


Click both images for a larger view.


Setup and Testing:
There is little to adjust in this circuit. First I suggest disconnecting the wiring to the emitters IR2 and IR3. Switch on and D2 should be off. Aim a remote in the direction of IR1 and press any button D2 should light and be seen to flash when a button is held on the handset and go off when unpressed. If all is well reconnect the wiring to emitters IR2 and IR3. Without lenses, the light is quite directional and so you will need to aim it carefully at the remote equipment you are controlling. A digital camera, or camcorder can "see" into the Infra red range. This is useful to prove that IR2 and IR3 are producing output.

Veroboard Layout:
Below is a picture of my veroboard layout for the Mk 5 IR extender using Ron J's excellent veroboard images. A tutorial on how to use the image is available in my practical section, click here for the article. Special thanks to Derek Smith for checking the veroboard layout and pointing out one small error (which is corrected now).

Mk5 veroboard layout


Special Note:I have omitted Diode D1 in my prototype and also the veroboard layout above, and the two images below. Click the links below to view the actual veroboard layouts. The veroboard drawing above shows the component site, the yellow circles represent the breaks on the bottom (track side).
Component side (106k)
Track side (97k)Note that this is reversed from component side.
For more help on vero layouts see this Practical Page.

Fault Finding:
If your circuit does not work, first check that your circuit is receiving power. Next compare the voltages to my prototype below. These checks are all made with a digital multimeter with a supply voltage of 12V DC. All checks are made with respect to ground (i.e. the back or negative meter probe is always connected to the negative or 0V power rail).

With no input signal:
IC1   Pin6       1.15V 
IC2   Pin6       0V
Q1    base       0.8V
Q1    collector  0.13V
Q2    emitter    0V

With a strong input signal (handset same room less than 2meters away):
IC1   Pin6       1.15V 
IC2   Pin6       0.15V
Q1    base       0.65V
Q1    collector  3.16V
Q2    emitter    2.79V


A good tip from Derek Smith (UK, who had problems with poor noise immunity in this circuit. Derek cured his fault by replacing the SFH2030 photo diode, the new SFH2030 provided much better noise immunity. So, if your voltage levels are similar to my prototype above then try replacing IR1.

If you still have problems with noise immunity check the supply voltage. Special thanks to Roch who found out that his 12V power supply was actually running at 16V. After reducing the voltage to 9V the problems disappeared for him. My original circuit ran happily from a 12V regulated supply.

Compatible Handsets:
If you build the mark 5 circuit please let me know the make and model of your remote control. I will add it to the list of compatible handsets below:-

Aiwa RC-ZVR01
Echostar URC-39756
Kameleon One for all remote (URC-8060) Maplins 6 way Audio/Video Switcher Hub order code L63AB
One for all remote
Panasonic EUR511200
Panasonic DVD player model no N2OAHC000012
Philips RC6512
Pioneer AXD7323
Pioneer VXX2801
Pioneer DVD remote
RCA systemlink 8 A-V
Saisho VR3300X
Sanyo vhs remote
Sony RM1- V141A VTR/TV
Sony RM-533
Sony RM-831
Std Sky digi box handset
Technics EUR64713
Xbox Remote


Mark 5 PCB:


The above pcb layout was kindly designed for this project by Lubo Veselsky.

Modification for 12V Vehicle Use:
The modifications below were kindly suggested by Allan Popplewell.



Allan writes: "I placed a TS7812 voltage stabilizer 2 columns over from Q2, across rows 2,3,4 with the heatsink to the right looking down (painted purple and called IC3 on the attached picture). I then moved the power input connector to the second (previously unused) row. The circuit will now receive only 12V, even though the car supply ranges from 13-15V depending on the charge state of the battery.
The circuit seems to work equally well at 9V, so a TS7809 would probably do just as well. I also replaced R1 with a 2M7 resistor seems to greatly improve noise rejection, especially from fluorescent or low-energy bulbs.
"

Thanks Allan for sharing your work with everyone and modifications- Andy Collinson.